1. Maria Hadjinicolaou, Gregory Kamvyssas and Eleftherios Protopapas, Deriving “Eigenflows” in Ellipsoidal Coordinate Systems of Revolution and in their Inverted ones. A Comparative Study. Proceedings of ICNAAM2017, American Institute of Physics. Paper , no 104. To appear.
  2. G.A.T. Messaris and G. T. Karahalios, Unsteady fluid flow in a slightly curved annular pipe: The impact of the annulus on the flow physics Phys. Fluids 29, 021903 (2017); doi: 10.1063/1.4976852
  3. G.A.T. Messaris, M. Hadjinicolaou, G.T. Karahalios, Why do we live for much less than 100 years? A fluid mechanics view and approach. Phys. Fluids 29, 081903 (2017).doi:10.1063/1.4998717
  4. G.A.T. MESSARIS, M HADJINICOLAOU, GT KARAHALIOS. 2017. Why do we live for much less than 100 years? A fluid mechanics view and approach. Physics of Fluids 29 (8), 081903
  5. G.A.T. Messaris, M. Hadjinicolaou, and G. T. Karahalios, Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution. Phys. Fluids 28, 081901 (2016). doi:/10.1063/1.4960432
  6. KARIOTOU F., SINIKIS D.E. 2016. An accelerated derivation of the acoustic low frequency expansion: the penetrable sphere. Mathematical Methods in the Applied Sciences, in press, DOI: 10.1002/mma.4024
  7. G.A.T. MESSARIS, M HADJINICOLAOU, GT KARAHALIOS. 2016. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution. Physics of Fluids 28 (8), 08190
  8. DOSCHORIS M., KARIOTOU F. 2016. Quantifying errors during the source localization process in Electroencephalography. Part 2: Non-confocal systems. Journal des Mathématiques Pures et Appliquées, submitted
  9. AMPATZOGLOU P., DASSIOS G., HADJINICOLAOU M., KOUREA H., VRAHATIS M.N., 2015, A chemical energy approach of Avascular tumor growth. Multiscale modeling and qualitative results. SpringerPlus 2015, 4:660  doi:10.1186/s40064-015-1417-5
  10. HADJINICOLAOU M., PROTOPAPAS E. 2015. Spectral decomposition of the Stokes flow operators in the inverted prolate spheroidal coordinates. IMA Journal of Applied Mathematics, (2015), 1-17, doi:10.1093/imamat/hxv003.
  11. HADJINICOLAOU M., PROTOPAPAS E., 2015. Translation of two aggregated Low Density Lipoproteins within blood plasma. A Mathematical model, Springer Series Advances in Experimental Medicine and Biology, 802, 184-193.
  12. HADJINICOLAOU M. 2015. A mathematical model for the blood plasma flow around two aggregated Low Density Lipoproteins, Springer Series Advances in Experimental Medicine and Biology, 802, 173-184
  13. HADJINICOLAOU M., G KAMVYSSAS, PROTOPAPAS E. 2015. Stokes flow applied to the sedimentation of a red blood cell. Quarterly of Applied Mathematics 73 (3), 511-523
  14. DOSCHORIS M., KARIOTOU F., SINIKIS D.E. 2016. An algebraic formula for the accelerated computation of the low frequency scattering coefficients: the case of the acoustically soft sphere. Applied Mathematics and Computation, 275, p. 13-23, DOI: 10.1016/j.amc.2015.11.044
  15. DASSIOS G., DOSCHORIS M., HATJIGEORGIOU J., KARIOTOU F., VAFEAS P. 2015. Revisiting a numerical implementation of the EEG problem in ellipsoidal geometry. Pioneer Journal of Advances in Applied Mathematics, 14, 1-2, p. 35-51
  16. KARIOTOU F., LESSELIER D., VAFEAS P. 2015. Estimates for the low–frequency electromagnetic fields scattered by two adjacent metal spheres in a lossless medium. Mathematical Methods in the Applied Sciences, DOI:10.1002/mma.3359, 38, p. 4210-4237 KARIOTOU F., PAPADOPOULOS P.K., VAFEAS P. 2014. Mathematical modeling of tumour growth in inhomogeneous spheroidal environment. International Journal of Biology and Biomedical Engineering, 8, p. 132-141
  17. DOSCHORIS M., KARIOTOU F. 2015. Quantifying errors during the source localization process in Electroencephalography. Part 1: Confocal systems. The IMA Journal of Applied Mathematics, submitted
  18. HADJINICOLAOU M., PROTOPAPAS E. 2014. Translation of two aggregated low-density lipoproteins within blood plasma: a mathematical model. GeNeDis 2014, 185-192
  19. KARIOTOU F., SINIKIS D.E. 2015. An algebraic calculation method for the acoustic low frequency expansion. Journal of Mathematical Analysis and Applications, 424, p.1506-1529, DOI: 10.1016/j.jmaa.2014.12.008.
  20. BAGANIS G., DASSIOS G., HADJINICOLAOU M., PROTOPAPAS E. 2014. The Kelvin transformation as a tool for analyzing problems in medicine and technology. Mathematical Methods in the Applied Sciences, 37, 194-199.
  21. HADJINICOLAOU M., PROTOPAPAS E. 2014. On the R-semiseparation of the Stokes bi-stream operator in inverted prolate spheroidal geometry. Mathematical Methods in the Applied Sciences, 37, 207-211.
  22. HADJINICOLAOU M. 2014. Virtual Class – An Appropriate Environment for Distance Learning Mathematics at an Open University. European Journal of Open, Distance and e-learning, http://www.eurodl.org/?p=current&sp=brief&article=620
  23. HADJINICOLAOU M., PROTOPAPAS E. 2014. On the R‐semiseparation of the Stokes bi‐stream operator in inverted prolate spheroidal geometry. Mathematical Methods in the Applied Sciences 37 (2), 207-211
  24. G. DASSIOS, HADJINICOLAOU M., PROTOPAPAS E. 2012. Blood plasma flow past a red blood cell: mathematical modelling and analytical treatment. Mathematical Methods in the Applied Sciences 35 (13), 1547-1563